8. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ

8.1 Окислительно-восстановительные реакции

8.1.1. Степень окисления элементов

Во многих химических реакциях происходит перемещение электронов от одних частиц к другим. Такие реакции называют окислительно-восстановительными (ОВР).

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Число электронов, смещенных от атома данного элемента или к атому данного элемента, называют степенью окисления (С.О.).

Поэтому все реакции, наблюдаемые в природе, делят на 2 группы:

а) протекающие без изменения С.О.: (реакции обмена, нейтрализации)

б) протекающие с изменением С.О.. Такие реакции называют окислительно-восстановительными.

Мысленно её можно разделить на две полуреакции:

Процесс отдачи электронов: 2Na0 - 2e‾ = 2Na+ - называется окислением

Процесс принятия электронов: Cl2 + 2e‾ = 2Cl- называется восстановлением.

Частицы, отдающие электроны, называются восстановители, они окисляются. Частицы, принимающие электроны, называются окислителями, они восстанавливаются. В химических окислительно-восстановительных реакциях окисление и восстановление взаимосвязаны.

Степень окисления можно рассматривать как условный заряд атома в соединении, вычисленный исходя из предположения, что соединение состоит из ионов. Степень окисления может быть положительная, отрицательная и нулевая.

Определение степени окисления проводят, используя следующие правила:

1. Степень окисления кислорода в соединениях равна (-2). Исключение составляют: пероксиды -  фторид кислорода.

2. Степень окисления водорода в соединениях равна (+1), кроме гидридов металлов - LiH, CaH2 и т.п., где степень окисления равна (-1).

3. Степень окисления атомов в простых веществах, например, в металле или в Н2, О2 равна 0.

4. Степень окисления щелочных металлов в соединениях равна (+1).

5. Алгебраическая сумма степеней окисления всех атомов, входящих в состав нейтральной молекулы равна 0, в сложном ионе – заряду иона.

Примеры:

  (+1) + x + 4(-2) = 0         х = +7

  (+1) + x + 3(-2) = 0            x = +5

  2x + 3(-2) = (-2)                    х = +2

В зависимости от С.О. атомы могут проявлять различные функции в ОВР. По этому признаку их можно разделить на три группы:

1. Только восстановительные свойства могут проявлять металлы в свободном состоянии, а также атомы в низких С.О.: Cl‾; Br‾; I‾; S2; N3. Низшая отрицательная степень окисления для неметаллов равна номеру группы минус 8 .

2. Только окислительные свойства проявляют атомы с высшей степенью окисления. Она равна номеру группы: .

3. Окислительно-восстановительную двойственность проявляют атомы, имеющие промежуточную степень окисления.

Пример: атом серы S0 может принимать два электрона и превращаться в ион S2, а также может отдать шесть электронов, приобретая заряд S+6. Т.е. в О.В.Р. сера может проявлять свойства окислителя и восстановителя.

8.1.2. Составление уравнений окислительно-восстановительных реакций

Уравнения О.В.Р. имеют очень сложный характер, и их составление представляет иногда трудную задачу. Рассмотрим метод электронного баланса, при котором учитывается:

Составление уравнений О.В.Р. легче провести в несколько стадий:

1)      установление формул исходных веществ и продуктов реакции;

2.      определение степени окисления элементов в исходных веществах и продуктах реакции;

1)      определение числа электронов отдаваемых восстановителем и принимаемых окислителем и коэффициентов при восстановителях и окислителях;

2)      определение коэффициентов при всех исходных веществах и продуктах реакции, исходя из баланса атомов в левой и правой частях уравнения.

Составим уравнение реакции окисления сульфата железа (II) перманганатом калия в кислой среде. Так как реакция протекает в кислой среде, то в левой  части уравнения кроме окислителя и восстановителя должна быть кислота. Продуктами реакции являются сульфаты марганца (II), калия, железа (III) и вода.

1.                Запишем схему реакции без коэффициентов

KMnO4 + FeSO4 + H2SO4 = MnSO4 + Fe2(SO4)3 + K2SO4 + H2O

2.                Определим степени окисления элементов, исходя из вышеприведенных правил

Как видно, С.О. меняется только у марганца и железа, у первого она понижается (восстановление), у второго – повышается (окисление).

3.                Определим число электронов, отдаваемых восстановителем FeSO4 и принимаемых окислителем KMnO4:

Как видно, Mn7+ принимает пять, а два иона Fe2+ отдают два электрона. Кратное число отдаваемых и принимаемых электронов равно 10. Отсюда легко найти коэффициенты перед окислителем и восстановителем в уравнении реакции

2КMnO4 + 10FeSO4 → 2MnSO4 + 5Fe2(SO4)3

4.        Подведем баланс всех атомов в левой и правой частях уравнения и определим коэффициенты при всех веществах. В левой части уравнения имеются два атома калия, поэтому для баланса по калию следует записать в правую часть уравнения молекулу сульфата калия. Для уравнивания групп  в левую часть уравнения необходимо записать 8 молекул H2SO4, а для уравнивания водорода - 8 молекул воды:

2KMnO4 + 10FeSO4 + 8H2SO4 → 2MnSO4 + 5Fe2(SO4)3 + K2SO4 +8H2O

Число атомов кислорода в левой и правой частях уравнения одинаково, поэтому данное уравнение является законченным.

8.2. Типы окислительно-восстановительных реакций

1.          Межмолекулярные – изменяются С.О. атомов элементов, входящих в состав разных веществ:

2.          Внутримолекулярные – окислитель и восстановитель - атомы одной молекулы:

3.          Самоокисления – самовосстановления (диспропорционирования) – один и тот же элемент повышает и понижает С.О.

.

Cl2  - является окислителем и восстановителем.

8.3. Направление окислительно-восстановительных реакций

О направлении ОВР можно судить по изменению энергии Гиббса G. Если G < 0 – реакция возможна, если G > 0 - невозможна. Из термодинамики известно, что G = -n·F·E; E = φок-ля -φв-ля или φок-ля > φв-ля, что возможно при Е > 0 и G < 0.

Рассмотрим реакцию:

.

Она состоит из двух полуреакций:


.

Т.к. φок-ля > φв-ля, то возможно самопроизвольное протекание реакции слева направо.

2FeCl3 + 2KJ → 2FeCl2 + J2 + 2KCl

Из всех возможных при данных условиях О.В.Р. в первую очередь протекает та, которая имеет наибольшую разность окислительно – восстановительных потенциалов.

О.В.Р. протекают в сторону образования более слабых окислителей и восстановителей из более сильных.

Роль окислительно-восстановительных процессов. О.В.Р. играют важную роль в природе и технике. О.В.Р. – это процессы фотосинтеза у растений, процессы дыхания у животных и человека, процессы горения топлива. Иногда О.В.Р. наносят ущерб природе и человеку, например, при коррозии металлов, лесных пожарах, образовании токсичных диоксинов.

При помощи О.В.Р. получают металлы, органические и неорганические соединения, проводят анализ различных веществ, очищают природные и сточные воды, газовые выбросы.

8.4. Электрохимические процессы

Электрохимические процессы это окислительно-восстановительные реакции, которые сопровождаются возникновением электрического тока или вызываются электрическим током.

В электрохимических процессах окислительная и восстановительная полуреакции пространственно разделены, а электроны переходят от восстановителя к окислителю не непосредственно, а по проводнику внешней цепи, создавая электрический ток. В О.В.Р этого типа наблюдается взаимное превращение химической и электрической форм энергии.

Выделяют две группы электрохимических процессов:

·        процессы превращения электрической энергии в химическую (электролиз);

·        процессы превращения химической энергии в электрическую (гальванические элементы).

Простейшая электрохимическая система состоит из двух электродов – проводников первого рода с электронной проводимостью, находящихся в контакте с жидким (раствор, расплав) или твердым электролитом - ионным проводником второго рода. Электроды замыкаются металлическим проводником, образующим внешнюю цепь электрохимической системы.

8.4.1. Электродный потенциал

При погружении в раствор электролита или воды активного металла его поверхностные ионы, находящиеся в узлах кристаллической решетки, вступают в различные взаимодействия с компонентами электролита. В результате на границе металл – раствор возникает разность потенциалов, называемая электродным потенциалом.

Если активный металл (Zn, Fe, Ca) погрузить в раствор его соли, полярные молекулы H2O, действуя своими отрицательными полюсами на положительные ионы кристаллической решетки, «извлекают» их, переводят в раствор, который заряжается положительно. На поверхности металла остаются электроны, заряжая ее отрицательно. Между гидратированными катионами в растворе и поверхностью металла устанавливается подвижное равновесие:

При погружении малоактивного металла (Cu, Ag, Pt) в раствор электролита протекает обратный процесс. Ионы из раствора переходят в кристаллическую решетку, заряжая металл положительно, а раствор за счет избытка анионов заряжается отрицательно.

На границе металл-жидкость возникает двойной электрический слой, характеризующийся определенным скачком потенциала - электродным потенциалом.

Абсолютные значения электродных потенциалов экспериментально определить невозможно. Потенциал каждого электрода зависит от природы металла, от концентрации ионов металла в растворе, от температуры. Поэтому электродные потенциалы измеряют, сравнивая с потенциалом электрода сравнения. Обычно применяют газовый стандартный водородный электрод, потенциал которого стабилен и принимается равным нулю.

Водородный электрод (рис. 21) представляет собой платиновую пластину 2, покрытую высодисперсной платиной (платиновой чернью). Пластина погружается в 1 М раствор серной кислоты 5,заливаемой в сосуд 1 трубку 3 с краном 4. Через трубку 6 с краном в раствор подается водород при давлении 101,3 кПа и температуре 25 ºС, омывающий электрод и насыщающий пористое покрытие платины. Из сосуда водород выводится через водяной затвор 7.

Платина, контактирующая с молекулами адсорбированного водорода, катализирует распад молекул на атомы. Атомы водорода, взаимодействуя с молекулами воды, переходят с поверхности в раствор в виде ионов. При этом платина заряжается отрицательно, а раствор – положительно. Наряду с переходом ионов в раствор на электроде идет обратный процесс восстановления ионов H+. Полуреакция этого процесса имеет вид:

Измеряя значение потенциалов металлов относительно водородного электрода в стандартных условиях, получают ряд стандартных электродных потенциалов или ряд напряжений:

Из ряда стандартных электродных потенциалов можно сделать следующие выводы:

8.4.2. Уравнение Нернста

Электродные потенциалы зависят от природы веществ, участвующих в электродном процессе, от соотношения между активностями этих веществ и  температуры. Для разбавленных растворов, эта зависимость выражается уравнением Нернста  в следующей форме:

где - стандартный электродный потенциал данного процесса,  = 8,31 Дж/(мольК) - универсальная газовая постоянная, - абсолютная температура раствора, - число молей электронов передаваемых в процессе,  = 96500 Кл/моль - постоянная Фарадея, [Ox] и [Red] – произведения концентраций веществ, участвующих в процессе в окисленной (Ox) и восстановленной (Red) формах. В общем случае в уравнении Нернста вместо концентраций необходимо использовать активности веществ.

После подстановки значений постоянных величин для стандартной при электрохимических измерениях температуре Т = 298 К уравнение Нернста имеет вид:

.

В электрохимической реакции растворения металла в растворе собственных ионов в условиях равновесия скорость растворения равна скорости разряда его ионов. Потенциал, устанавливающийся на электроде при равновесии, называется равновесным потенциалом металла.

При постоянных давлении и температуре для чистого металла активность и концентрацию металла можно положить равной, то есть

.

Тогда

.

8.4.3. Гальванические элементы

Гальванические элементы или химические источники электрической энергии это устройства, в которых химическая энергия окислительно-восстановительной реакции превращается в электрическую.

Рассмотрим устройство и принцип работы гальванического элемента Даниэля-Якоби. Он состоит из корпуса 1 (рис. 22), разделенного на две части пористой перегородкой 2. В каждую из частей помещаются электроды: медный 3 и цинковый 4. Медный электрод погружается в раствор сульфата меди, цинковый – в раствор сульфата цинка. Пористая перегородка предотвращает смешивание соприкасающихся растворов и пространственно разделяет окислительно-восстановительную реакцию, протекающую при замкнутой внешней цепи: окисление цинка и восстановление меди.

На поверхности цинка атомы, соприкасаясь с раствором, превращаются в ионы, гидратируются и переходят в раствор. В результате возникает двойной электрический слой, устанавливается равновесие и возникает электродный потенциал цинка.

.

На медном электроде протекает аналогичный процесс, приводящий к возникновению электродного потенциала медного электрода.

.

Потенциал цинкового электрода отрицательный по сравнению с медным электродом, поэтому при замыкании внешней цепи электроны будут переходить от цинка к меди. В результате этого равновесие на цинковом электроде сместится вправо и в раствор перейдет дополнительное число ионов цинка. На медном электроде равновесие сместится влево и произойдет разряд ионов меди. Эти процессы будут продолжаться до тех пор, пока не растворится весь цинк или не высадится на медном электроде вся медь.

Итак, при работе элемента Даниэля-Якоби протекают процессы:

.

Этот процесс окисления называют анодным, а электрод – анодом.

.

Процессы восстановления называют в электрохимии катодными, а электроды, на которых идут процессы восстановления – катодами.

·        Движение ионов в растворе: анионов  к аноду, катионов  к катоду. Движение ионов в растворе замыкает электрическую цепь гальванического элемента.

Суммируя электродные реакции, получим:

.

Это, так называемая, токообразующая реакция.

При схематическом отображении гальванического элемента границу раздела между проводником первого рода (металлом) и проводником второго рода (электролит) обозначают одной вертикальной чертой, а границу раздела между проводниками второго рода – двумя чертами:

или

Гальванический элемент, составленный из одинаковых металлов, контактирующих с растворами солей этих же металлов различной концентрации (активности), называется концентрационным.

Схематически концентрационный элемент можно описать следующим образом

.

Электрический ток возникает при замыкании внешней цепи в процессе переноса вещества от анода к катоду и выравнивании концентраций. Оба электрода при работе не испытывают изменения.

Потенциалы электродов описываются уравнениями:

,

,

а э.д.с. концентрационного гальванического элемента выражением

.

8.4.4. Электродвижущая сила гальванического элемента

С помощью гальванического элемента можно совершить электрическую работу A за счет энергии химической реакции. Электрическая работа равна произведению разности потенциалов электродов на количество электричества.

Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (э.д.с.) элемента.

э.д.с. Eэ равна разности равновесных потенциалов катода и анода

Eэ = φк - φа.

Если на электродах превращается один моль эквивалентов вещества, то по закону Фарадея через систему протекает один фарадей электричества, при превращении 1 моля вещества – n фарадеев электричества, равное числу молей эквивалентов в одном моле вещества. То есть, максимальная электрическая работа гальванического элемента при превращении 1 моля вещества равна

Aмэ = n·F·Eэ,

где Eэ - э.д.с. гальванического элемента;

      n - число молей эквивалентов;

      F – число Фарадея, 96500 Кл.

С другой стороны максимальная полезная работа, совершаемая системой при протекании реакции при постоянном давлении равна энергии Гиббса реакции.

Aмр = - ΔG.

Так как Aмр = Aмэ, то

Eэ = - [ΔG/(n·F)].

Это уравнение показывает связь между химической и электрической энергиями. Зная энергию Гиббса реакции, можно определить э.д.с. гальванического элемента и наоборот.

Энергия Гиббса реакции зависит от активностей реагентов и продуктов реакции или парциальных давлений. Рассчитаем э.д.с. для реакции

.

Энергия Гиббса по уравнению Вант-Гоффа равна

.

Здесь ΔG0 – стандартная энергия Гиббса реакции;  - активности реагентов и продуктов реакции, соответственно, (для газов необходимо использовать вместо активностей парциальные давления p).

Так как ΔG = - n·F·Eэ, то

.

Отсюда

,

где учтено, что активности чистых металлов aCu = aZn = 1, n = 2.

 - стандартная э.д.с. элемента.

Стандартной э.д.с. элемента называется э.д.с., если парциальные относительные давления исходных веществ и продуктов реакции равны единице или активности исходных веществ и продуктов реакции равны единице.

Для рассматриваемой реакции стандартная энергия Гиббса ΔG0 = - 212,3 кДж/моль. Поэтому стандартная э.д.с. элемента Даниэля-Якоби при температуре 298 К

8.4.5. Измерение э.д.с. гальванического элемента

Напряжение, непосредственно измеряемое на клеммах гальванического элемента вольтметром, меньше его э.д.с.. (U < Eэ).

Разница обусловлена омическим падением напряжения на внутреннем сопротивлении элемента и другими эффектами. Измерение э.д.с., обычно, проводят компенсационным методом, при котором ток, протекающий через элемент, близок к нулю. Для этого параллельно элементу подключают внешний источник тока, э.д.с. которого имеет противоположный знак. В измерительную цепь включают также гальванометр для измерения тока и вольтметр для измерения напряжения. В момент, когда выходное напряжение внешнего источника тока равно э.д.с. гальванического элемента (момент компенсации э.д.с.), ток в цепи и показания гальванометра равны нулю. Измеренное в этот момент вольтметром напряжение на клеммах гальванического элемента равно его э.д.с..

Достаточно близким к э.д.с. элемента будет напряжение, измеренное на его клеммах, высокоомным, например цифровым, вольтметром.

Э.д.с. гальванического элемента измеряют для экспериментального определения термодинамических функций токообразующих реакций.

8.5. Химические источники тока

Электрохимический способ преобразования химической энергии в электрическую с помощью химических источников обладает рядом достоинств по сравнению с другими способами. Он обладает высоким к.п.д., бесшумностью, безвредностью, возможностью использования в космосе и под водой, в переносных устройствах и на транспорте.

Электрохимические источники тока делят на три группы:

1.    гальванические первичные элементы;

2.    вторичные источники тока (аккумуляторы);

3.    электрохимические генераторы (топливные элементы).

8.5.1. Гальванические первичные элементы

Гальваническими первичными элементами называются устройства для прямого преобразования химической энергии заключенных в них реагентов (окислителя и восстановителя) в электрическую. Эти источники одноразового действия непрерывного или с перерывами. Реагенты, входящие в состав источника, расходуются в процессе его работы, и действие источника прекращается после расхода реагентов. Примером гальванического элемента служит рассмотренный элемент Даниэля –Якоби.

Гальванические элементы характеризуются: э.д.с., емкостью, энергией, которую он может отдать во внешнюю цепь, сохраняемостью.

·        Э.д.с. элемента определяется термодинамическим функциями, протекающих в них процессов.

·        Емкость элемента – это количество электричества, которое источник тока отдает при разряде. Зависит от массы запасенных в источнике реагентов и степени их превращения. Емкость элемента снижается с понижением температуры, увеличением разрядного тока.

·        Энергия элемента численно равна произведению его емкости на напряжение. Энергия возрастает с увеличением количества вещества реагентов в элементе и до определенного предела с увеличением температуры. Увеличение разрядного тока уменьшает энергию.

·        Сохраняемость – это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Увеличение температуры хранения уменьшает сохраняемость элемента.

Широкое распространение (радиоаппаратура и электронные устройства, карманные фонарики и др.) получили марганцево-цинковые элементы, в которых анодом служит цинковый электрод, катодом - электрод из смеси диоксида марганца с графитом, токоотводом – графит. Электролитом является паста из раствора хлорида аммония с добавкой муки или крахмала в качестве загустителя. Схематически элемент изображается следующим образом

(+)MnO2,C|NH4Cl|Zn(-)       Eэ = (1,5 – 1,8) В.

Токообразующая реакция элемента имеет вид

Zn + 2NH4Cl + 2MnO2 = [Zn(NH3)2]Cl2 + 2MnOOH.

На аноде элемента протекает реакция окисления цинка, на катоде восстановление Mn(IV) до Mn(III)

Анод        Zn - 2e = Zn2+

Катод      Mn4+ + 1e‾ = Mn3+.

Mарганцево-цинковые элементы относительно дешевы, но имеют невысокие эксплуатационные характеристики. Напряжение элемента быстро уменьшается во времени при увеличении тока нагрузки и понижении температуры, особенно при отрицательных температурах. Более высокие характеристики имеют элементы с теми же электродами, но щелочным электролитом (KOH). В последние годы широкое применение получили элементы с литиевыми анодами, неводными растворами электролитов и катодными материалами на основе оксида марганца, оксида меди, сульфида железа и др. Эти элементы характеризуются стабильным напряжением, длительной сохраняемостью, способностью работать при низких (до – 50 ºС) температурах.

8.5.2. Аккумуляторы

Аккумуляторы – это устройства, в которых электрическая энергия внешнего источника тока превращается в химическую энергию и накапливается, а химическая – снова превращается в электрическую. Процесс накопления химической энергии называется зарядом аккумулятора, процесс превращения химической энергии в электрическую – разрядом. При заряде аккумулятор работает как электролизер, при разряде - как гальванический элемент. Процессы заряда – разряда в аккумуляторах осуществляются многократно.

Одним из наиболее распространенных является свинцовый (или кислотный) аккумулятор, в котором электролитом является 25 - 30 % раствор серной кислоты. Электродами кислотного аккумулятора являются свинцовые решетки, первоначально заполненные оксидом свинца, который при взаимодействии с электролитом превращается в PbSO4. Решетки отделяются друг от друга пористыми сепараторами.

Схематическое изображение свинцового кислотного аккумулятора имеет вид

Pb|H2SO4|PbO2|Pb,

а токообразующая реакция описывается уравнением

,   Eэ = 2.1 В.

В результате заряда активная масса одного электрода превращается из PbSO4 в Pb, а активная масса второго электрода из PbSO4 – в PbO2.

Свинцовые аккумуляторы обладают высоким к.п.д. (до 80 %), высокой э.д.с., простотой и малой ценой, что обуславливает их широкое применение на транспортных средствах в качестве стартерных аккумуляторов. Срок службы аккумулятора до 5лет.

Щелочные аккумуляторы обладают большим сроком службы, до 10 лет, и высокой механической прочностью. Наибольшее применение получили никель-кадмиевые и никель-железные аккумуляторы, в которых электролитом служит 20-23 % раствор KOH. Положительным электродом является гидроксид никеля, отрицательным – либо кадмий, либо железо.

Уравнения электродных процессов описываются уравнениями

 Eэ = 1,45 В.

 Eэ = 1,48 В.

Этот тип аккумуляторов обладает меньшими к.п.д. и напряжением по сравнению с кислотным.

8.5.3 Топливные элементы и электрохимические энергоустановки

В топливном элементе окислитель и восстановитель хранятся вне элемента и процессе работы непрерывно и раздельно подаются к электродам, где происходит непосредственное превращение химической энергии в электрическую. Электроды топливного элемента в процессе работы не расходуются. Удельная энергия топливного элемента (энергия единичного объема или массы) значительно превышает энергию гальванических элементов. В качестве восстановителя в топливных элементах используют водород (H2), метанол (CH3OH), метан (CH4) в жидком или газообразном состоянии, окислителем, обычно, кислород воздуха или чистый.

В кислородно-водородном топливном элементе (рис. 23) со щелочным электролитом (2) происходит превращение химической энергии в электрическую в реакции

Н2 + ½O2 = H2O.

К аноду (1) топливного элемента подводится топливо (восстановитель – H2), к катоду (3) – окислитель (кислород).

Схема элемента имеет вид

где M – проводник 1-го рода, играющий роль катализатора электродного процесса и токоотвода. На аноде протекает реакция окисления водорода

H2 + 2OH‾ - 2e‾ = 2H2O,

а на катоде восстановление кислорода

½O2 + H2O + 2e‾ = 2OH‾.

В результате протекания токообразующей реакции

H2 + ½O2 = H2O

во внешней цепи протекает электрический ток, и химическая энергия превращается в электрическую.

Стандартная э.д.с. водородно-кислородного топливного элемента Eэ = 1,23 В. Для большинства элементов э.д.с. составляет 1,0 – 1,5 В.

В процессе работы электроды топливного элемента поляризуются, в результате чего э.д.с. элемента уменьшается. Для снижения поляризации применяют катализаторы, пористые электроды из высокодисперсных порошков металла или угля, обладающие большой площадью поверхности, увеличивают температуру протекания реакции и концентрацию электролита. В качестве катализаторов электродов топливного элемента используют Ag, металлы платиновой группы, специально обработанные никелем и кобальтом и активированный уголь. На этих электродах уже при 25 – 100 ºС достигается выcокая скорость восстановления O2 и окисления H2, поэтому их называют низкотемпературными.

Окисление природных видов топлива: нефти, газа, угля проводят в высокотемпературных топливных элементах, работающих при 500 ºС и выше. В качестве электролита в высокотемпературных топливных элементах используются или расплавы солей (Li2CO3 + Na2CO3), или твердые электролиты, например, смесь ZrO2 и Y2O3. Обычно природное топливо подвергают предварительной обработке водяным паром в присутствии катализаторов. В результате конверсии метана в присутствии катализатора получают смесь газов, содержащую водород, которую направляют в топливный элемент

.

Для увеличения напряжения и тока топливные элементы соединяют в батареи. Для непрерывной работы топливного элемента необходимы устройства для подвода реагентов, отвода продуктов реакции и теплоты. Все это вместе взятое называют электрохимической энергоустановкой. Мощность электрохимических энергоустановок составляет от десятков ватт до десятков мегаватт. к.п.д. энергоустановок в 1,5 – 2 раза превышает к.п.д. тепловых машин. Они меньше загрязняют окружающую среду.

Наиболее разработаны кислородно-водородные энергоустановки, которые нашли применение на космических кораблях. Они обеспечивают космический корабль и космонавтов не только электроэнергией, но и водой - продуктом реакции.

Широкому применению электрохимических энергоустановок препятствует их высокая стоимость и относительно короткий срок службы.

8.6. Электролиз

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза применяют устройства, называемые электролизерами. В зависимости от вида получаемого продукта (металл, газ, раствор) применяют различные конструкции электролизеров. В простейшем случае электролизер состоит из двух электродов, погружаемых в электролит. Электрод, подключаемый к отрицательному полюсу внешнего источника постоянного тока, называют катодом. На катоде протекает процесс восстановления – принятия электронов. Электрод, подключаемый к положительному полюсу источника питания, называют анодом. На нем идет процесс окисления – отдача электронов.

Процессы электролиза, протекающие на электродах, зависят:

1) от вида электродов: металлические или неметаллические (графитовые);

2) от состояния электролита (раствор или расплав).

Рассмотрим процессы электролиза разбив его на две группы:

8.6.1. Электролиз расплавов

Имеется расплав NaCl. Катионы и анионы находятся в хаотическом движении. Если в расплав опустить графитовые электроды и пропустить постоянный электрический ток, то катионы Na+ будут двигаться к катоду, а анионы Cl – к аноду.

На катоде катионы натрия, взаимодействуя с электронами, приходящими по внешней цепи, восстанавливаются. На аноде протекает процесс окисления ионов хлора и последующее связывание атомов Cl в молекулы Cl2.

Если электролизу подвергается расплав, который содержит несколько различных катионов металлов, то при этом в первую очередь восстанавливаются катионы металлов, обладающих большим значением электродного потенциала.

Окислительно-восстановительное действие электрического тока во много раз сильнее действия химических окислителей и восстановителей. Меняя напряжение на электродах, можно создать любой силы окислители и восстановители, которыми являются электроды.

8.6.2. Электролиз водных растворов

Более сложные процессы электролиза протекают в водных растворах электролитов. Рассмотрим электролиз с инертными (нерастворимыми) электродами водного раствора NaCl.

Если концентрация NaCl окажется очень мала, то на аноде вместе с ионами Cl могут окисляться молекулы H2O:

.

Руководствуясь табличными значениями стандартных электродных потенциалов металлов можно сделать вывод о последовательности протекания электродных процессов

Катодные процессы.

На катоде:

;

.

На отрицательном катоде легче всего разряжаются катионы или молекулы с наиболее положительным потенциалом.

То есть:

Анодные процессы.

На аноде протекают процессы окисления, то есть электроны отводятся внешним источником тока. В зависимости от вида электролита и материала анода на аноде могут окисляться анионы, молекулы растворителя (чаще всего H2O), а также сам материал анода.

Чем ниже величина потенциала, тем легче вещество окисляется на положительно поляризованном аноде.

Рассмотрим электролиз с инертными (нерастворимыми) электродами водного раствора K2SO4

Электролиз водных растворов с растворимым анодом: Cu, Ag, Zn, Cd, Ni  рассмотрим на примере NiSO4.

8.6.3. Законы электролиза

Законы электролиза установлены в 1833 г английским ученым Майклом Фарадеем.

1.      Масса вещества, окисленного на аноде или восстановленного на катоде при электролизе, прямопропорциональна количеству электричества, прошедшего через раствор или расплав электролита.

m = k . Q = k . I . t,

где: m - масса полученного вещества (кг); k-электрохимический эквивалент (кг/Кл),  Q-количество электричества (Кл), I- сила тока.

2.      Массы веществ, окисляющихся на аноде и восстанавливающихся на катоде, при постоянном количестве электричества относятся друг к другу, как их эквивалентные массы.

m1:m2:m31:Э2:Э3.

Следствие: для получения одного эквивалента любого вещества путём электролиза нужно пропустить через электролит заряд Q = F = 96500 Кл электричества. Эта величина называется числом Фарадея F.

Выражая электрохимический эквивалент через химический эквивалент Э (кг/моль) и число Фарадея F = 96500 Кл/моль

,

запишем первый закон Фарадея в объединенной форме

.

На законах Фарадея основаны расчеты электрохимических установок. Они являются теоретической базой для создания счетчиков количества электричества (кулонометров, интеграторов тока) и других устройств.

8.6.4. Электрохимическая поляризация при электролизе

На практике при электролизе нередко сила тока, пропускаемого через электролизер за счет внешнего источника питания, постепенно падает, несмотря на то что, на клеммах электролизера поддерживается постоянным. Вследствие этого процесс электролиза затормаживается, а иногда может остановиться совсем. Это обусловлено поляризацией электродов, то есть отклонением потенциала от его равновесного значения. Наибольший вклад в поляризацию дают химическая и концентрационная составляющие.

Химическая поляризация связана с процессами, изменяющими химический состав поверхности электродов. Это возможно при адсорбции или осаждении на них продуктов электролиза, что ведет к изменению химической природы поверхности электродов. В электролизере возникает поляризационная э.д.с., направленная противоположно рабочему току, вследствие чего сила его уменьшается, а, следовательно, затрудняется и работа электролизера.

Концентрационная поляризация возникает за счет неодинакового изменения концентраций веществ в слое раствора, прилежащего к поверхности электродов. Например, при электролизе раствора AgNO3 с серебряными электродами концентрация электролита в катодном пространстве уменьшается, а в анодном уменьшается, что приводит к возникновению концентрационного элемента э.д.с., которого направленного против рабочей разности потенциалов. В связи с поляризацией необходимо дополнительное повышение напряжения на клеммах электролизера, чтобы он работал бесперебойно. Поэтому на практике принимают меры для деполяризации, то есть уменьшения или полного устранения поляризации.

Для устранения химической поляризации в качестве деполяризаторов используют соединения, взаимодействующие с адсорбированными веществами. В случае концентрационной поляризации используют невысокую плотность тока (сила тока на единицу площади поверхности электрода), что обусловливает не слишком интенсивное протекание процесса электролиза, а это уменьшает опасность возникновения концентрационной поляризации. Концентрационную поляризацию можно снизить энергичным перемешиванием электролита.

8.6.5. Перенапряжение. Потенциал разложения

Чтобы протекал процесс электролиза, разность потенциалов, приложенная к электродам должна быть не меньше некоторой определенной величины, характерной для этого процесса

Наименьшая разность потенциалов, необходимая для проведения данного процесса электролиза, называется потенциалом разложения или напряжением разложения. Потенциалы разложения находят опытным путем. Иногда они совпадают со стандартными потенциалами. Но на практике величина потенциала разложения равна большей величине. Разность между опытным (экспериментальным) и теоретическим значением потенциала разложения называют перенапряжением.

Катодное перенапряжение можно рассматривать как дополнительное напряжение, прикладываемое к катоду, (при этом потенциал анода смещается в положительную сторону). Величина перенапряжения зависит от материала электродов, состояния их поверхности, состава электролита концентрации раствора и ряда других факторов.

8.6.6. Выход по току

При электролизе во многих случаях выделяется вещества меньше, чем должно получиться согласно закону Фарадея. Это объясняется тем, что наряду с основными электродными процессами окисления и восстановления протекают побочные и параллельные процессы, например, реакции взаимодействия образовавшегося вещества с электродом или электролитом или выделения наряду с металлом водорода и другие процессы. Поэтому для учета той части прошедшего через электролит электричества, которое расходуется на получение желаемого продукта, введено понятие выход по току.

Выход по току η - это отношение массы полученного вещества в данных условиях электролиза к массе теоретически вычисленной на основании закону Фарадея.

или

.

8.6.7. Применение электролиза

Электролиз находит широкое применение в промышленности, технике, искусстве и быту

8.7. Коррозия металлов

Коррозия - это разрушение металла под воздействием окружающей среды. Коррозия приводит к большим потерям в результате разрушения трубопроводов, цистерн, металлических частей машин, корпусов судов, морских сооружений и т.п. Безвозвратные потери металла от коррозии составляют до 15% от ежегодного выпуска стали. Кроме того, к убыткам от коррозии можно отнести также стоимость испорченных изделий и потерянного продукта: масла, газа, воды и т.п.. Выброс природного газа и других пожаро- и взрывоопасных веществ через прокорродировавшие отверстия может привести к взрывам и большим материальным и человеческим потерям.

Потери экономики от коррозии исчисляются млрд. рублей ежегодно. Цель борьбы с коррозией – это сохранение ресурсов металлов, мировые запасы которых ограничены.

По механизму коррозионного процесса различают химическую и электрохимическую коррозию.

8.7.1. Химическая коррозия

Химическая коррозия происходит при взаимодействии металла с сухими газами при повышенных температурах или неэлектролитами - жидкостями, непроводящими электрический ток (нефть сернистая) Химическая коррозия протекает без возникновения электрического тока. Этот тип коррозии также называется газовой коррозией.

При 250-300 ºС на поверхности углеродистой стали, чугуна появляется пленка оксидов, которая при повышении температуры до 600 ºC превращается в слой окалины из оксидов Fe3O4, имеющая поры и трещины.

Взаимодействие металлов с газами происходит при повышенных температурах в печах, двигателях внутреннего сгорания, ей подвергаются лопатки газовых турбин и металлы, подвергающиеся термической обработке.

Медь и алюминий защищает от коррозии защитная пленка:

8.7.2. Электрохимическая коррозия

Электрохимическая коррозия металлов является более распространенной. К ней относятся все случаи коррозии в водных растворах или во влажной атмосфере. К электрохимической коррозии также относится разрушение металлов при контакте двух разнородных металлов в присутствии H2O или других электролитов. Ей подвергаются подводные части судов, паровые котлы, трубопроводы в почве.

Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной среде микрогальванических элементов. В результате коррозии протекает анодное окисление металла и катодное восстановление окислителя – среды. Скорость коррозии будет зависеть от природы металла, окислителя, природы и количества примесей в металле и среде.

1. Рассмотрим коррозию металла, содержащего малые включения инородного металла. Включения  не влияют на величину потенциала основного металла. Этот вид коррозии будет наблюдаться, например, на стальном листе с медной заклепкой, контактирующим с кислотой HCl (рис. 24).

Возникающий гальванический элемент работает в соответствии со схемой:

Это коррозия называется коррозией с водородной деполяризацией. (Окислитель называют обычно деполяризатором)

Согласно общим термодинамическим представлениям коррозия возможна, если потенциал металла в данной среде меньше, чем потенциал окислителя.

2. Рассмотрим коррозию стальных гвоздей во влажном воздухе.

Поверхность изделия содержит примеси углерода или карбидов (рис. 25) и покрыта во влажной атмосфере пленкой воды, с растворенным в ней кислородом.

Возникающий гальванический элемент работает в соответствии со схемой:

Это коррозия с кислородной деполяризацией.

Примеси, загрязнения играют роль катода, металл – анода. Чистые металлы – не корродируются.

8.7.3. Методы защиты металлов от коррозии

Электрохимические методы защиты.

1. Металлические покрытия. Корродирующий металл покрывают слоем другого металла, практически не разрушающегося в тех же условиях. Материалом для покрытия служат чистые металлы (цинк, медь, хром, серебро, олово и др.) и их сплавы (бронза, латунь и др.). В зависимости от соотношения между электродными потенциалами покрытия и защищаемого металла покрытия делят на две группы - анодные и катодные.

Схема возникающего коррозионного гальванического элемента имеет вид

Схема возникающего при повреждении катодного покрытия коррозионного гальванического элемента имеет вид

2. Протекторная защита – это метод защиты металлической конструкции (трубопровод, корпус судна), находящейся  в среде электролита. В основе метода лежит торможение катодных или анодных реакций процесса коррозии. К защищаемой конструкции (рис. 28) прикрепляют пластины из металла Б (протектора) более активного, чем металл конструкции А. протектор постепенно разрушается, защищая от коррозии конструкцию А.

3. Электрозащита (катодная защита). Метод используется для защиты от коррозии конструкций (трубопроводы, кабели, корпуса подводных лодок, ворота шлюзов и др.), находящихся в коррозионной среде с высокой ионной проводимостью. Защищаемая конструкция подсоединяется к отрицательному полюсу источника тока – катоду, а металл (куски старого железа) – к аноду. При определенной силе тока на защищаемом изделии – катоде, идет восстановление окислителя, а анод – окисляясь, подвергается растворению.

Химические методы защиты.

Для защиты поверхности металлических изделий от коррозии широко применяются разнообразные металлические и неметаллические поверхностные покрытия, действие которых сводится к изоляции металла от окружающей среды. Кроме того, защитные покрытия часто имеют и декоративное значение.

1. Неметаллические защитные покрытия.

2. Покрытия, образуемые на поверхности защищаемого металла.

Для создания защитного покрытия металлические изделия подвергают химической обработке для получения на его поверхности слоя химического соединения стойкого против коррозии. Для получения покрытий используются следующие процессы.

3. Изменение состава коррозионной среды.

Агрессивность коррозионной среды можно снизить уменьшением концентрации активных коррозионных компонентов. Коррозию, протекающую с поглощением кислорода, снижают деаэрацией среды (кипячение, барботаж инертного газа). Широкое распространение для защиты от коррозии получили ингибиторы. Ингибитор – это вещество, которое при добавлении в небольших количествах в коррозионную среду значительно уменьшает скорость коррозии металла. Ингибиторы, адсорбируясь на корродирующей поверхности, вызывают торможение анодных или катодных процессов.

4. Изменение состава технического металла.

Коррозионную стойкость металла повышают изменением состава его сплава. Этот метод называется легированием. При легировании в сплав металла вводят компоненты, вызывающие пассивность металла. Для стали такими компонентами являются хром, никель, вольфрам и др. При легировании повышается жаростойкость (стойкость к газовой коррозии при высоких температурах) и жаропрочность (сохранение высокой механической прочности при повышенных температурах). Так при легировании железа 12% Cr или 1% Si и 15% Cr получают нержавеющую сталь с высокой жаростойкостью, применяемую при изготовлении лопаток газовых турбин, реактивных двигателей и в двигателях внутреннего сгорания.

 

Hosted by uCoz